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ABSTRACT — Field divergence emulation in FDTD is
revisited, and new theoretical aspects as well as problems of
practical importance are revealed and resolved. Various
choices of divergence definition are discussed in terms of
their predictive power. It is shown that total FDTD
solutions inevitably violate Gauss law in dipole radiation or
eigenvalue analysis, The theory of S- and P-eigenmodes is
applied to understand these problems and to restore their
physical soiutions. Recipes for extracting correct radiation
efficiency, radiation resistance, Q-factors and modal field
patterns in the presence of P-modes are proposed.

I. INTRODUCTION

Over the last two decades, the FDTD method has
attracted an impressive research effort, resulting in 2
plethora of FDTD software packages used in microwave
research and engineering practice. An important rationale
behind the FDTD success, and its important asset with
respect to the more classicai FEM, reside in the
remarkable immunity to spurious modes. This can be
traced back to the divergence conservation on the FDTD
meshes. Thus, studies of FDTD dispersion relations
(e.g{1]..[3]) and divergence properties [4][5] are of
practical importance.

The present paper contains a critical review of earlier
works on the subject, reveals previously unknown
divergence-violation phenomena in FDTD applications
involving punctual sources, explains earlier noticed but
unexplained FDTD errors, and proposes simple recipes
for restoring the physical results.

I1. DIVERGENCE DEFINITIONS IN FDTD

While dispersion properties of FDTD eigensolutions
have been investigated by many authors, e.g.[1]..[3], the
properties of the resulting FDTD eigenmodes, and their
divergence properties in particular, have attracted less
attention [1][4][5]. With reference to Fig.1, it has been
shown that the flux of E-fields (marked by thick arrows)
through any dual cell surface (as that dashed) remains
constant in time. The reasoning behind is, that if a certain
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H-field component enters an FDTD update equation of
one E-field on one of the dual cell walls, then it also
enters the update equation of another E-field on another
wall, with an opposite sign. For example, H; at (1.5,0.5,1)
in Fig.l1 will influence both £, at (1.5,1,1) and E, at
(1,0.5,1). Based on this observation, FDTD has been
claimed to conserve the numerical divergence, and hence
to emulate non-divergent physical modes.

Herein we will show that both conclusions become
incorrect in certain cases because they have been based on
insufficient premises:

Firstly, a hypothetical FDTD system without any
excitation has been considered, while in all practical
problems we need to include sources. Let us imagine
applying a point source to E, at (1.5,1,1); this field wili
now be increased without a corresponding change in E, at
(1,0.5,1). Hence, numerical divergence will be violated.

Secondly, only the rotal divergence has been
investigated so far. It is known from earlier work on FEM
[6] that a total non-divergent solution may comprise a
physical mode erroneously emulated with non-zero
divergence, and a compensating spurious mode. Hence,
individual treatment of FDTD eigenmodes is needed to
ensure that the propagating modes will not be corrupted
with non-zero divergence, if imposed e.g. by a punctual
source.

We have started a systematic study of FDTD
eigenmodes in [7]. A complete dispersion relation has
been derived in the following factorised form:

P(wAt) S (wdt, Bia, Ba, Ba)=0 8]
where:
P (wAt) = sin®(0.5041) 2

S (wat, Bea, fa , Ba) = [- 7 sin’(0.5wAn+
+sin’(0.58,a)+ sin’(0.58,a) + sin*(0.58.a) I* 3)

Please note that eq.(l) differs from the classically
presented FDTD dispersion relations [13..[3] by revealing
the P-term, responsible for the static potential mode.
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The properties of P- and S-modes can now be studied
independently of each other, by enforcing their respective
modal dispersion relations (2) and (3) into the matrix
representation of FDTD, given by eq.8) in [7). In
particular, it can be proven that:

» S-modes are always

divergence,

» P-modes are emulated with zero curl, but may have

non-zero divergence, -

Such separate evaluation of modal divergence allows us
to predict the nature of field disturbances caused by
punctual sources, We claim that any such disturbances
will take the form of non-propagating P-modes. In
Sections III and IV we shall further study the P-modes in
radiation and eigenvalue problems.
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Fig.1. A cluster of eight FDTD cells with one centred dual
cell for E-field divergence definition.

However, before we proceed to practical applications,
let us clarify one more theoretical issue related to the
FDTD divergence and previously untackled in the
literature, Please note that the definition of divergence in
Fig.1 is inherently integral and concerns the flux through
the finite FDTD cell surface. In principle, we can also
consider a differential definition denoted by Ve:

VeE=E, »Bx +Ey ﬁ: +Ex ﬂx @

Since all modal amplitudes and propagation constants
can be extracted from the FDTD simulations, we can
calculate the differential divergence. The integral and
differential definitions will always agree to the second
order in small guantities. While the choice of integral
definitions is earlier papers may seem somewhat
arbitrary, we shall now provide its justification. Namely,
the integral definition is bound to the way in which
boundary and initial conditions are set up in the FDTD
system. Any subtle but systematic discrepancy between
zero integral divergence of S-modes and non-zero
divergence of sources or erroneously defined boundaries
will invoke compensating P-modes.
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I11. DIPOLE RADIATION PROBLEMS

Consider a Hertzian dipole radiating in free space. In
the literature, two models of applying excitation to the
dipole have been considered (see eg.[8]):
¢ hard (or imposed) source — when the field calculated
at the excited node by FDTD equations is replaced by
the source value,

o soft (or added) source - when the source value is
added to the value calculated by FDTD.

In {8] it has been found that the near-fields excited by a
soft source differ by over 20% with rtespect to the
analytical solution, Despite such a large discrepancy, and
despite the fact that its satisfactory explanation has not
been given in [8] - the effect has not attracted further
attention. We will now attribute it to the P-mode.

Let us assume that the excited field is E, at (1,1,1.5) in
Fig.1 {vertical arrow). Both hard and soft models result in
non-zero divergence immediately below and above the
dipole, i.e., in dual cells centred at (1,1,1) and (1,1,2),
respectively. We know from Section II that the
propagating S-mode has zero divergence, so dipole
radiation fields are physically modelled. A spurious P-
mode is invoked to compensate the difference between the
S-mode zero divergence and that of the source. However,
as shown in Section II, the P-mode does not propagate
and remains cenfined in the proximity of the dipole,

In general, the source divergence varies with time, and
50 does the P-mode amplitude. A special case is a delta-
pulse soft source. It injects unity current at /=0, thus
creating unity divergence. At subsequent iterations no
further current pulses are applied, and the total
divergence remains constant by virtue of the reasoning
summarised in Section il. Consequently, the P-mode sets
up and remains constant, even after all the radiating
fields have been absorbed at the boundaries.

To validate these predictions, we model a cubic region
of side 40mm with 2mm mesh resofution and place the
dipole in its centre. We excite the dipole with soft delta
source. Fig.2 shows the late-time E; field in the xy-plane
of the dipole. This pattern remains stationary.
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Fig.2. Steady-state static distribution of E, field in the plane
of E; dipele excited by a soft delta source of 1V/m amplitude.
The peak value of E; is 0.333 V/m.



This experiment also confirms the non-propagating
nature of P-modes, which explains why the near-to-far
(NTF) transformation filters them out and produces
correct shapes of radiation characteristics. However, the
P-mode may significantly contaminate absolute values of
antenna directive gain and directivity. To scale the
radiation patterns in gain, we need to extract total
radiated power as a reference value. Usually we simply
integrate the Poynting vector over the NTF box.

Fig.3 shows several radiation patterns, all calculated in
steady-state. The steady-state fields on the NTF box are
constant but non-zero, which makes the Fourier
transform  ill-conditioned. Thus, the total power
integrated on the NTF box fluctuates with time. The
patterns shown in Fig.3 have the correct sin’@ shape but
differ in magnitudes. Almost any value of gain and
directivity can be snapped from such a simulation.
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Fig.3. Directive gain of a Hertzian dipole excited by a soft
delta source, for different methods of integrating the total
radiated power: dotted curve - in the far zone; other curves - on
the NTF box, at four different time instants.

As a remedy, an alternative way of power integration is
proposed herein. Since the NTF transform filters out the
non-propagating fields, we can calculate a full spherical
radiation pattern (by NTF transformation for stepped
azimuthal and elevation angles), and integrate the power
in the far zone. This process is slower but restores the
unique values of dipole gain and directivity of 1.5 (see
dotted curve in Fig3), It also provides comrect radiation
resistance.

IV. EIGENVALUE PROBLEMS

One of the pioneering papers on FDTD eigenproblem
analysis [9] has proposed to start the FDTD simulation
with initial ficld distribution resembling the expected
mode. Further papers have been concerned with an
alternative approach, namely, introducing auxiliary
punctual excitation [10]. With the latter approach, we can
also apply sinusoidal waveforms and directly observe the
emulation of eigenmodes. Selected 2D cuts through so-
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simulated field distributions have been presented
previously, but what has not been revealed is field
corruption by the P-mode near the source. This is
demonstrated in Fig.4. It concerns the TM110 mode in
the 10x10x5mm cavity resonator, simulated with 0.5mm
mesh resolution, and excited at 21.21 GHz by the hard
source located at (3mm, 3mm, 2.25mm). The P-mode
content is even better visible and more disturbing when
the S-mode passes through zero.

We bave shown in previous Section that the P-mode
cannot be avoided as it follows directly from the
excitation mechanism. However, while for dipoles field
distribution around the source is of minor practical
importance, as long as we are able to correctly extract the
far field data — the knowledge of modal field
distributions is crucial for understanding and designing
high-frequency resonators,

To develop a method of emulating pure eigenmodes in
3D resonators, we shall start with an earlier concept of a
resistive voltage source. It has been originally proposed in
[11] for detecting closely-spaced modes in 2D analysis of
transmission lines. Basically, we apply excitation from a -
voltage source via resistance R. Please note that the
resistive source reduces to the imposed voltage source for
R=0, and to the added current source for R=+INF.

We can now predict that a high but finite R will
effectively decouple the auxiliary source from the
resonator, and hence reduce the P-mode content.
However, we cannot start the analysis with high R
because a very long simulation time would be needed to
inject sufficient energy into the resonator.

To resclve these conflicting requirements, we develop
sources with non-stationary resistance. We start with low
R but after the mode has been established, we increase R.
Please note that we cannot change R abruptly: this would
correspond to instantaneous source disconnection, and
excite undesired frequencies. Based on practical
simulations, increasing R by 1% per iteration can be
recommended. The bottom display of Fig.4 shows the
produced pure physical S-mode.

The new capability of eliminating P-modes in
eigenvalue analysis opens further possibilities of accurate
Q-factor extraction directly from the field distribution. In
the considered resonator, we now assume inner air to be
lossy (tand=0.01}. In steady state we integrate
accumulated energy and dissipated power over the
volume, detect their average values W and P, and
calculate Q from definition: Q=2rf W/ P,

Please note that the P-mode content increases both ¥
and P. Simuiation with a hard source produces the value
of Q=90.4. 1t is important to note that although only one
out of 500 FDTD cells has been driven by an auxiliary



source, the excited P-mode has caused 9.6% etror with
respect to the analytical solution of Q=100. Simulation
with non-stationary resistance, after eliminating the P-
mode as in Fig4, almost perfectly reproduces the
analytical solution giving Q=100.2.

Fig.4. The E: field in the xy plane containing the source:
hard  (upper} and the one wih non-stationary resistance
gradually increased by 1% per iteration cver 1000 iterations
{lower).

IV. CONCLUSIONS

Divergence properties of the FDTD method have been
studied from a new perspective of P- and S-eigenmodes,
In extension to previous works, which have shown
divergence conservation of total FDTD solutions in the
absence of any excitation, we have considered practical
applications with punctual sources. In a general case,
divergence of the total field will then vary with time; in a
special case of soft delta sources, the total divergence will
be conserved but non-zero. The developed theory
indicates that in any case, the total solution can be
decomposed into physical S-modes and spurious P-modes.
All the divergence induced by the source is confined to
the P-modes, which do not propagate. .

These theoretical predictions have been confirmed by
demonstrating the P-modes invoked by soft and hard
sources in Hertzian dipole and cavity resonator
simulations. Practical measures for suppressing the
parasitic effects of the P-mode on the FDTD results have
been proposed and validated. In particular, correct far
field characteristics of directive gain, directivity, and
radiation resistance have been restored by integrating the
reference power in the far zone, The source with non-
stationary internal resistance has been developed for

emulating pure physical moedes in microwave resonators,
By suppressing the P-mode it allows to comectly extract
dissipated power, energy, and Q-factors directly from the
FDTD fields.

The theory of P- and S-modes originated in [7] and
validated herein enhances the understanding of the FDTD
method fundamentals. It has further been applied to the
development  of  spurious-free  excitation  of
inhomogeneous transmission lines and of higher-order
conformal boundary models. Relevant examples will be
presented at the Conference.
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