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ABSTRACT - Field divergence emulation in FDTD is 
revisited, and new theoretical aspects 89 well as problems of 
practical importance are revealed and resolved. Various 
choices of divergence definition are discussed lo terms of 
their predictive power. It is shown that total FDTD 
sotuttans inevitably vi&ate Gauss hw In dipole radiation or 
eigeovalue analysis. The theory of S- and P-eigenmodes is 
applied to understand these problems and to restore their 
physical solutions. Recfpes for extracting correct radiation 
eMcie”cy, radiatton resistance, Q-factors and mods, field 
patterns in the presence of P-modes are proposed. 

1. lNTRODUCTION 

Over the last two decades, the FDTD method has 
attracted a” impressive research effort, resulting in a 
plethora of FDTD sotiare packages used in microwave 
research and engineering practice. A” important rationale 
behind the FDTD success, and its important asset with 
respect to the more classical FEM. reside in the 
remarkable immunity to spurious modes. This can he 
traced back to the divergence conservation on the FDTD 
meshes. Thus, studies of FDTD dispersion relations 
(e.g.[1]..[3]) and divergence properties [4][5] are of 
practical importance. 

The present paper contains a critical review of earlier 
works on the subject, reveals previously unknown 
divergence-violation phenomena in FDTD applications 
involving punctual sources, explains earlier noticed but 
unexplained FDTD errors, and proposes simple recipes 
for restoring the physical results. 

II. DIVERGENCE DEFI?JITIONS IN FDTD 

while dispersion properties of FDTD eigensolutions 
have bee” investigated by many authors, e.g.[1]..[3], the 
properties of the resulting FDTD eigenmodes, and their 
divergence properties in particular, have attracted less 
attention [1][4][5]. With reference to Fig.1, it has bee” 
show” that the flux of E-fields (marked by thick arrows) 
through any dual cell surface (as that &shed) remains 
constant in time. The reasoning behind is, that if a certain 

H-field component enters a” FDTD update equation of 
one E&Id on one of the dual cell walls, then it also 
enters the update equation of another E-field on another 
wall, with a” opposite sign. For example, Hz at (1.5,0.5,1) 
in Fig.1 will influence both E, at (I .5,1,1) and EY at 
(l,O.S,l). Based on this observation, FDTD has bee” 
claimed to conserve the numerical divergence, and hence 
to emulate “on-divergent physical modes. 

Herein we will show that both conclusions become 
incorrect in certain cases because they have bee” based on 
insufficient premises: 

Firstly, a hypothetical FDTD system without any 
excitation has been considered, while in all practical 
problems we need to include sources. Let us imagine 
applying a point S”UTCZ to E, at (I.&l, I); this field will 
now be increased without a corresponding change in Ev at 
(1,0.5,1). Hence, numerical divergence will be violated. 

secondly, only the total divergence has been 
investigated so far. It is known from earlier work on FEM 
[6] that a to&l non-divergent solution may comprise a 
physical mode erroneously emulated with “on-zero 
divergence, and a compensating spurious mode. Hence, 
individual treatment of FDTD eigennmdes is needed to 
e”s”re that the propagating modes will not be conupted 
with “on-zero divergence, if imposed e.g. by a punctual 
source. 

We have started a systematic study of FDTD 
eigenmodes in [7]. A complete dispersion relation has 
been derived in the following factor&d form: 

P(wdf) S(odt,&&7,fi)=O (1) 
where: 
P (tif ) = sid(O.Swdt) (2) 

S (ox%, au. &I , &7) = [- rZ sin’(O.Stit)+ 

tsin’(0.5&z)t sin’(O.S&) t sin’(O.5fip) I2 (3) 

Please note that eq.(l) differs from the classically 
presented FDTD dispersion relations [ I]..[31 by revealing 
the P-term, responsible for the static potential mode. 
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The properties of P- and S-modes can now be studied 
independently of each other, by enforcing their respective 
modal dispersion relations (2) and (3) into the matrix 
representation of FDTD, given by eq.@) in 171. In 
particular, it can be proven that: 

> S-mcdcs are always emulated with Z~TO 
divcrge”ce, 

> P-modes arc emulated with zero curl, but may have 
non-zero divergence. 

Such separate evaluation of modal divergence allows us 
to predict the nature of field disturbances caused by 
punctual sources. We claim that any such disturbances 
will take the form of non-propagating P-modes. In 
Sections III and IV we shall further study the P-modes in 
radiation and eigenvalue problems. 

* nm 
Fig. I. A cluster of eight FDTD cells with one centred dual 

cell for E-field divergence definition. 

However, before we proceed to practical applications, 
let us clarify one more theoretical issue related to the 
FDTD divergence and previously untackled in the 
literature. Please note that the definition of divergence in 
Fig.1 is inherently integral and wncerns the flux through 
the finite FDTD cell surface. In principle, we can also 
consider a differentin definition denoted by ye: 

E*E=E~&+Exo~x+E,oLi (4) 

Since all modal amplitudes and propagation constants 
can be extracted from the FDTD simulations, we can 
calculate the dijfential divergence. The integral and 
dif/ential definitions will always agree to the second 
order in small quantities. While the choice of integral 
definitions is earlier papers may ~ccm somewhat 
arbitray, we shall now pmvide its justification. Namely, 
the integral definition is bound to the way in which 
boundary and initial conditions are set up in the FDTD 
system. Any subtle but systematic discrepancy between 
zero integral divergence of S-modes and non-zero 
divergence of sources 01 crmneously defmed boundaries 
will invoke compensating P-modes. 

III. DIPOLE RADIATION PROBLEMS 

Consider a Hertzian dipole radiating in free space. In 
the literature, hvo models of applying excitation to the 
dipole have been considered (see eg.[8]): 
l hard (or imposed) source -when the field calculated 

at the excited node by FDTD equations is replaced by 
the Source value, 

. sofl (or added) source - when the ~ourcc value is 
added to the value calculated by FDTD. 

In [8] it has been found that the near-fields excited by a 
soft soucc differ by over 20% with respect to the 
analytical solution. Despite such a large discrepancy, and 
despite the fact that its satisfactory explanation has not 
been given in [8] - the effect has not attracted further 
attention. We will now attribute it to the P-mode. 

Let us assume that the excited field is E, at (1 ,1 ,1.5) in 
Fig.1 (vertical arrow). Both hard and soft models result in 
non-zero divergence immediately below and above the 
dipole, i.e., in dual cells centred at (1.1.1) and (1,1,2), 
respectively. We know from Section I1 that the 
propagating S-mode has zero divergence, so dipole 
radiation fields arc physically modelled. A spurious P- 
mode is invoked to compensate the difference between the 
S-mode zero divergence and that of the source. However, 
as shown in Section II, the P-mode does not propagate 
and remains confined in the proximity of the dipole. 

In general, the source divergence varies with time, and 
so does the P-mode amplitude. A special case is a deltz- 
pulse soft source. It injects unity current at t=O, thus 
creating unity divergence. At subsequent iterations no 
further current pulses arc applied, and the total 
divergence remains constant by vime of the reasoning 
summatised in Section II. Consequently, the P-mode sets 
up and remains constant, even a&r all the radiating 
fields have been absorbed at the boundaries. 

To validate these’predictions, we model a cubic region 
of side 40mm with 2mm mesh resolution and place the 
dipole in its centrc. We excite the dipole with soft delta 
source. Fig.2 shows the late-time E, field in the xy-plane 
of the dipole. This pattern remains stationary. 

Fig.2. Steady-state static distribution of E, field in the plane 
of Ex dipole excited by a sot? delta source of IV/m amplitude. 
The peak value of E, is 0.333 V/m. 
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This experiment also contim~ the non-propagating 
nature of P-modes, which explains why the near-to-far 
(NTF) transformation filters them out and produces 
correct shapes of radiation characteristics. However, the 
P-mode may significantly contaminate absolute values of 
antenna directive gain and directivity. To scale the 
radiation patterns in gain, we need to extract total 
radiated power as a reference value. Usually we simply 
integrate the Poynting vector over the NTF box. 

simulated field distributions have been presented 
previously, but what has not been revealed is field 
corruption by the P-mode near the source. This is 
demonstrated in Fig.4. It concerns the TM110 mode in 
the lOxlOx5mm cavity resonator, simulated with OSmm 
mesh resolution, and excited at 21.21 GHz by the hard 
SOUTC~ located at (3mm, 3mm, 2.25nun). The P-mode 
content is even better visible and more disturbing when 
the S-mode passes through zero. 

Fig.3 shows several radiation patterns, all calculated in _ We have shown in previous Section that the P-mode 
steady-state. The steady-state fields on the NTF box are cannot be avoided as it follows directly from the 
constant but non-zero, which makes the Fourier excitation mechanism. However, while for dipoles field 
transform ill-conditioned. Thus, the total power distribution around the source is of minor practical 
integrated on the NTF box fluctuates with time. The importance, as long as we are able to correctly extract the 
patterns shown in Fig.3 have the correct sin% shape but far iield data - the Iawwledge of modal field 
differ in magnitudes. Almost any value of gain and distributions is crucial for understanding and designing 
diictivity can be snapped from such a simulation. high-frequency resonators. 

To develop a method of emulating pure eigenmodes in 
3D resonators, we shall start with an earlier concept of a 
resistive voltage source. It has been originally proposed in 
[l l] for detecting closely-spaced modes in 2D analysis of 
transmission lines. Basically, we apply excitation from a 
voltage source via resistance R. Please note that the 
resistive wurce reduces to the imposed voltage source for 
R=O, and to the added current source for R-tINF. 
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Fig.3. Directive gain of a Hertzian dipole excited by a sofl 
delta source, for different methods of integrating the total 
radiated power: dotted curve - in the far zone; other curves -on 
the NTF box, at four different time instants. 

As a remedy, an alternative way ofpower integration is 
proposed herein. Since the NTF transform filters out the 
non-propagating fields, we can calculate a full spherical 
radiation pattern (by NTF transformation for stepped 
azimuthal and elevation angles), and integrate the power 
in the far zone. This process is slower but restores the 
unique values of dipole gain and directivity of 1.5 (see 
dotted curve in Fig.3). It also provides correct radiation 
resistance. 

IV. EIGENVALUE PROBLEMS 

One of the pioneering papers on FDTD eigenproblem 
analysis [9] has proposed to start the FDTD simulation 
with initial field distribution resembling the expected 
mode. Further papas have been concerned with an 
alternative approach, namely, introducing auxiliary 
punctual excitation [IO]. With the latter approach, we can 
also apply sinusoidal waveforms and directly observe the 
emulation of eigenmodes. Selected 2D cuts tbmugb so 

We can now predict that a high but finite R will 
effectively decouple the auxiliary source from the 
resonator, and hence reduce the P-mode content. 
However, we cannot start the analysis with high R 
because a very long simulation time would be needed to 
inject sufficient energy into the resonator. 

To resolve these conflicting requirements, we develop 
source8 with non-stationary resistance. We start with low 
R but after the mode has been established, we increase R. 
Please note that we cannot change R abruptly: this would 
correspond to instantaneous source disconnection, and 
excite undesired frequencies. Based on practical 
simulations, increasing R by 1% per iteration can be 
recommended. The bottom display of Fig.4 shows the 
produced pure physical S-mode. 

The new capability of eliminating P-modes in 
eigenvalue analysis opens further posstbthhes of accurate 
Q-factor extraction directly from the field distribution. In 
the considered resonator, we now assume inner air to he 
lossy (tan60.01). In steady state we integrate 
accumulated energy and dissipated power uver the 
volume, detect their average values _W and E, and 
calculate Q from definition: Q=2xf_wl p. 

Please note that the P-mode content increases both _W 
and p. Simulation with a hard source produces the value 
of Q--90.4. It is important to note that although only one 
out of 500 FDTD cells has been driven by an auxiliary 
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source, the excited P-mode has caused 9.6% error with 
respect to the analytical solution of Q=lOO. Simulation 
with non-stationary resistance, after eliminating the P- 
mode as in Fig.4, almost perfectly reproduces the 
analytical solution giving Q=lOO.Z. 

Fig.4. The G field in the xy plane containing the source: 
hard (upper) and the one wih non-stationary resistance 
gmdually increased by I% per iteration over 1000 iterations 
(lower). 

IV. CoNCLUsloNs 

Divergence properties of the FJYI’D method have been 
studied From a new perspective of P- and S-eigenmodes. 
In extension to previous works, which have shown 
divergence conservation of total FDTD solutions in the 
absence of any excitation, we have considered practical 
applications with punctual smuces. In a general case, 
divergence of the total field will then vary with time; in a 
special case of soft delta SOUICCS, the total divergence will 
be conserved but non-zero. The developed theory 
indicates that in any case, the total solution can be 
decomposed into physical S-modes and spurious P-modes. 
All the divergence induced by the source is confmed to 
the P-modes, which do not propagate. 

These theoretical predictions have been confirmed by 
demonstrating the P-modes invoked by sot? and hard 
sources in Hertzian dipole and cavity resonator 
simulations. Practical measures for suppressing the 
parasitic effect?, of the P-mode on the FDTD results have 
been proposed and validated. In particular, correct far 
field characteristics of directive gain, directivity, and 
radiation resistance have been restored by integrating the 
reference power in the far zone. The source with non- 
stationary internal resistance has been developed for 

emulating pure physical modes in microwave resonators. 
By suppressing the P-mode it allows to correctly extract 
dissipated power, energy, and Q-factors directly from the 
FDTD fields. 

The theory of P- and S-modes originated in [7] and 
validated herein enhances the understandine of the FDTD 
method fundamentals. It has further been applied to the 
development of SpUiOUS-free excitation of 
inhomogeneous transmission lines and of higher-order 
conformal boundary models. Relevant examples will be 
presented at tbe Conference. 
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